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Cell Type Input Cells Anchor Protein Average % Long-
range Interaction

EBV 1-10M H3K27ac 24.79
EBV 10M CTCF 20.02

Primary B Cells 10M H3K27ac 18.45
Primary T Cells 10M H3K27ac 15.64

Primary Monocytes 10M H3K27ac 19.08
Primary CD4+ T Cells 4M H3K27ac 15.10
Primary CD4+ T Cells 4M CTCF 16.67

HiChIP Efficiently Generates High-Quality 
Informative Data in EBV Cells and Primary Cells

• Three-dimensional (3D) chromatin loops bring distant promoters and 

enhancers into close proximity to regulate gene transcription
1
. 

• Protein factors, such as cohesion and histone, facilitate the formation of the 3D 

chromatin conformation. Studying protein-mediated 3D genome architecture 

can help to understand how target genes influence human diseases
2,3

. 
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Method HiChIP ChIA-PET
Input Cells 1-10M > 100M

Processing Time 2-4 Days 6 days

% Long-range Interaction > 20% 1-2%

% In Loops > 4% < 0.5%

• HiChIP is a new protein-mediated 

chromatin conformation capture 

method with improved efficiency and 

lower starting material requirements 

than ChIA-PET
4,5

. 

• The objective of this study is to comprehensively map the protein-mediated 3D 

genome architecture in EBV-transformed human B cells and primary immune 

cells using HiChIP. We examined protein factors CCCTC-binding Factor (CTCF) 

and Histone 3 lysine 27 Acetylation (H3K27ac) as structural and functional 

regulation units. 

Results

• HiChIP is a rapid and efficient method to measure protein-mediated 3D genome 

architecture in EBV-transformed human B cells and primary immune cells. 

• HiChIP yields high-quality informative reads using input cell numbers 10-100 fold 

lower than traditional methods like ChIA-PET, and it is sensitive to identify 

haplotype-specific and cell type-specific 3D chromatin interactions.

• HiChIP can help to identify and characterize functional targets associated with 

GWAS variants in non-coding regions. Our data may also help to discern potential 

causal risk SNPs within a large linkage disequilibrium (LD) region.

• In the future, we will perform HiChIP on primary human cells obtained from SLE 

patients and healthy individuals to investigate how 3D chromatin topology is 

associated with SLE genetic variants and disease pathology. 

• HiChIP: Intact nuclei were digested using MboI restriction enzyme. The DNA 

fragment ends were filled and labeled with biotin. After proximity ligation, DNA 

was fragmented and ChIP enrichment was performed using CTCF or H3K27ac 

antibodies. HiChIP library was generated on streptavidin beads using Nextera

DNA Library Prep Kit.

• Sequencing and Data Analysis: Libraries were sequenced on the Illumina

NextSeq 500 sequencer. HiChIP raw reads were processed and analyzed 

through the hichipper6
pipeline. Intrachromosomal loops are defined with a 

minimum length of 5KB and a maximum length of 2MB. Anchor and looping 

patterns are visualized by DNAlandscapR7
.
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HiChIP Characterizes Cell Type-Specific DNA loops
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HiChIP Reveals SLE Haplotype-Specific DNA loops
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